11 research outputs found

    Enhancing Warehouse Performance by Efficient Order Picking

    Get PDF
    This thesis studies order picking in warehouses. Order picking, the process of retrieval products from their storage locations to fill customer orders, is regarded as the most critical operation in a warehouse. Using stochastic modelling, we develop a model to estimate order picking system performance on various design alternatives and operating policies. The model is fast, flexible, and sufficiently accurate for practical purposes. The thesis introduces a concept of Dynamic Storage. In a Dynamic Storage System (DSS), orders are picked in batches and only those products needed for the current pick batch are retrieved from a reserve area and are stored in the pick area, just in time. Through analytical and simulation models, we demonstrate a DSS can substantially improve order throughput and reduce labour cost simultaneously over conventional order picking systems, where all the products required during a pick shift are stored in the pick area. The thesis also studies an internal distribution process at a flower auction company. Based on simulation and optimization models, we propose ways to reduce congestion and improve order lead time

    Performance Approximation and Design of Pick-and-Pass Order Picking Systems

    Get PDF
    In this paper, we discuss an approximation method based on G/G/m queuing network modeling using Whitt’s (1983) queuing network analyzer to analyze pick-and-pass order picking systems. The objective of this approximation method is to provide an instrument for obt

    Serum Starvation Induced Cell Cycle Synchronization Facilitates Human Somatic Cells Reprogramming

    Get PDF
    Human induced pluripotent stem cells (iPSCs) provide a valuable model for regenerative medicine and human disease research. To date, however, the reprogramming efficiency of human adult cells is still low. Recent studies have revealed that cell cycle is a key parameter driving epigenetic reprogramming to pluripotency. As is well known, retroviruses such as the Moloney murine leukemia virus (MoMLV) require cell division to integrate into the host genome and replicate, whereas the target primary cells for reprogramming are a mixture of several cell types with different cell cycle rhythms. Whether cell cycle synchronization has potential effect on retrovirus induced reprogramming has not been detailed. In this study, utilizing transient serum starvation induced synchronization, we demonstrated that starvation generated a reversible cell cycle arrest and synchronously progressed through G2/M phase after release, substantially improving retroviral infection efficiency. Interestingly, synchronized human dermal fibroblasts (HDF) and adipose stem cells (ASC) exhibited more homogenous epithelial morphology than normal FBS control after infection, and the expression of epithelial markers such as E-cadherin and Epcam were strongly activated. Futhermore, synchronization treatment ultimately improved Nanog positive clones, achieved a 15–20 fold increase. These results suggested that cell cycle synchronization promotes the mesenchymal to epithelial transition (MET) and facilitates retrovirus mediated reprogramming. Our study, utilization of serum starvation rather than additional chemicals, provide a new insight into cell cycle regulation and induced reprogramming of human cells
    corecore